DAG: SierraGorda_HomologateStorage Functions that homologate files related to SierraGorda

schedule: 0,0 13,1 * * *


Task Instance: Terrain_homologatefields


Task Instance Details

Dependencies Blocking Task From Getting Scheduled
Dependency Reason
Dagrun Running Task instance's dagrun was not in the 'running' state but in the state 'success'.
Task Instance State Task is in the 'success' state which is not a valid state for execution. The task must be cleared in order to be run.
Attribute: python_callable
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def homologate_fields_in_terrain_file(origin_container, origin_blob, final_container, final_blob): 
    """
    Función que permite homologar los campos en terrain para que queden con el mismo nombre de los campos en flanders. 
    
    Parámetros
    ----------
    origin_container: str
        Nombre del contenedor donde se encuentra el archivo a homologar.
    origin_blob: str
        Nombre del archivo que contiene los campos a homologar.
    final_container: str
        Nombre del contenedor donde se guardará el archivo.
    final_blob: str
        Nombre del archivo que se guardará en el contenedor final.

    Returns
    -------
    None
    """
    # Read terrain hole position file 
    conn_origin_container = BlobClient.from_connection_string(conn_str=BLOB_CONNECT_STRING, container_name=origin_container, blob_name=origin_blob)
    download_origin_blob = conn_origin_container.download_blob()
    df_terrain = pd.read_json(download_origin_blob, orient='table')

    # Merge files
    df_terrain['time_start'] = df_terrain['time_start'].astype('datetime64[ns]')
    df_terrain['time_end_informacion'] = df_terrain['time_end_informacion'].astype('datetime64[ns]')
    df_terrain['drill_time'] = (df_terrain['time_end_informacion'] - df_terrain['time_start']).dt.total_seconds()

    multiples_of_16 = [x for x in range(800, 3000) if x % 16 == 0]
    df_terrain['benchbelow'] = df_terrain.apply(lambda x: calculateBenchBelowTerrrain(x, 'design_z', multiples_of_16), axis=1)

    # Create new fields
    df_terrain['RecordID'] = np.nan
    df_terrain['shift_index'] = np.nan
    df_terrain['Mine_HoleNumber'] = df_terrain['hole_id']
    df_terrain['BenchBelow'] = df_terrain['bench']
    df_terrain['BitNumber'] = ''
    df_terrain['BitUsage'] = np.nan
    df_terrain['AvgHoleEnergy'] = np.nan
    df_terrain['AvgPenetrationRate2'] = np.nan
    df_terrain['HoleDepth'] = df_terrain['depth']
    df_terrain['TargetDepth'] = df_terrain['design_depth']
    df_terrain['PatternHoleNumber'] = ''
    df_terrain['BlastName'] = ''
    df_terrain['DrillPattern'] = ''
    df_terrain['DateTime'] = df_terrain['time_start']
    df_terrain['Drill_Number'] = df_terrain['machine_id']
    df_terrain['OperatorID'] = np.nan
    df_terrain['HoleNumber'] = df_terrain['name']
    df_terrain['DesignNorthing'] = df_terrain['design_y']
    df_terrain['DesignEasting'] = df_terrain['design_x']
    df_terrain['ActualCollarNorthing'] = df_terrain['start_y']
    df_terrain['ActualCollarEasting'] = df_terrain['start_x']
    df_terrain['designelevation'] = df_terrain['design_z']
    df_terrain['actualelevation'] = df_terrain['start_z']
    df_terrain['actualgroundelevation'] = np.nan
    df_terrain['Bench Below'] = df_terrain['benchbelow']
    df_terrain['Hole Difference'] = ''
    df_terrain['Rango'] = ''
    df_terrain['Categoria'] = ''
    df_terrain['Nombre Categoria'] = ''
    df_terrain['Desviacion'] = ''
    df_terrain['Extra Sobreperforación'] = np.nan
    df_terrain['Extra Reperforación'] = np.nan
    df_terrain['Turno'] = ''
    df_terrain['DrillTime'] = df_terrain['drill_time']

    ## Transformaciones
    df_terrain['Mine_HoleNumber'] = df_terrain['Mine_HoleNumber'].astype(str)
    df_terrain['HoleNumber'] = df_terrain['HoleNumber'].astype(str)
    df_terrain['Bench Below'] = df_terrain['Bench Below'].astype(str)

    lista_campos = [x.strip().replace("'","") for x in COLUMNAS_FLANDERS]
    df_terrain = df_terrain[lista_campos]

    # Write file to blob
    blob = BlobClient.from_connection_string(conn_str=BLOB_CONNECT_STRING, container_name=final_container, blob_name=final_blob)
    json_data = df_terrain.to_json(index=False, orient='table')
    blob.upload_blob(json_data, overwrite=True)
Task Instance Attributes
Attribute Value
dag_id SierraGorda_HomologateStorage
duration 0.23296
end_date 2025-12-15 13:01:44.069764+00:00
execution_date 2025-12-15T01:00:00+00:00
executor_config {}
generate_command <function TaskInstance.generate_command at 0x7783d3ac3040>
hostname 447b87b210b3
is_premature False
job_id 3929
key ('SierraGorda_HomologateStorage', 'Terrain_homologatefields', <Pendulum [2025-12-15T01:00:00+00:00]>, 2)
log <Logger airflow.task (INFO)>
log_filepath /usr/local/airflow/logs/SierraGorda_HomologateStorage/Terrain_homologatefields/2025-12-15T01:00:00+00:00.log
log_url http://localhost:8080/admin/airflow/log?execution_date=2025-12-15T01%3A00%3A00%2B00%3A00&task_id=Terrain_homologatefields&dag_id=SierraGorda_HomologateStorage
logger <Logger airflow.task (INFO)>
mark_success_url http://localhost:8080/success?task_id=Terrain_homologatefields&dag_id=SierraGorda_HomologateStorage&execution_date=2025-12-15T01%3A00%3A00%2B00%3A00&upstream=false&downstream=false
max_tries 0
metadata MetaData(bind=None)
next_try_number 2
operator PythonOperator
pid 829625
pool default_pool
prev_attempted_tries 1
previous_execution_date_success 2025-12-14 13:00:00+00:00
previous_start_date_success 2025-12-15 01:01:40.395723+00:00
previous_ti <TaskInstance: SierraGorda_HomologateStorage.Terrain_homologatefields 2025-12-14 13:00:00+00:00 [success]>
previous_ti_success <TaskInstance: SierraGorda_HomologateStorage.Terrain_homologatefields 2025-12-14 13:00:00+00:00 [success]>
priority_weight 1
queue default
queued_dttm 2025-12-15 13:01:41.245499+00:00
raw False
run_as_user None
start_date 2025-12-15 13:01:43.836804+00:00
state success
task <Task(PythonOperator): Terrain_homologatefields>
task_id Terrain_homologatefields
test_mode False
try_number 2
unixname airflow
Task Attributes
Attribute Value
dag <DAG: SierraGorda_HomologateStorage>
dag_id SierraGorda_HomologateStorage
depends_on_past False
deps {<TIDep(Not In Retry Period)>, <TIDep(Trigger Rule)>, <TIDep(Previous Dagrun State)>}
do_xcom_push True
downstream_list []
downstream_task_ids set()
email None
email_on_failure True
email_on_retry True
end_date None
execution_timeout None
executor_config {}
extra_links []
global_operator_extra_link_dict {}
inlets []
lineage_data None
log <Logger airflow.task.operators (INFO)>
logger <Logger airflow.task.operators (INFO)>
max_retry_delay None
on_failure_callback None
on_retry_callback None
on_success_callback None
op_args []
op_kwargs {'origin_container': 'processed', 'origin_blob': 'SierraGorda/BrightBoard/Terrain/2026-01-02/TerrainFile.json', 'final_container': 'processed', 'final_blob': 'SierraGorda/BrightBoard/Terrain/2026-01-02/terrain_2026-01-02.json'}
operator_extra_link_dict {}
operator_extra_links ()
outlets []
owner pedro
params {}
pool default_pool
priority_weight 1
priority_weight_total 1
provide_context False
queue default
resources None
retries 0
retry_delay 0:05:00
retry_exponential_backoff False
run_as_user None
schedule_interval 0,0 13,1 * * *
shallow_copy_attrs ('python_callable', 'op_kwargs')
sla None
start_date 2023-04-22T00:00:00+00:00
subdag None
task_concurrency None
task_id Terrain_homologatefields
task_type PythonOperator
template_ext []
template_fields ('templates_dict', 'op_args', 'op_kwargs')
templates_dict None
trigger_rule all_success
ui_color #ffefeb
ui_fgcolor #000
upstream_list [<Task(PythonOperator): Terrain_joinfiles>]
upstream_task_ids {'Terrain_joinfiles'}
wait_for_downstream False
weight_rule downstream