DAG: SierraGorda_BrightBoard Functions that clean data in files related to SierraGorda

schedule: 30,30 12,0 * * *


Task Instance: BrighBoard_GenerarCrudeFlandersOpitReal


Task Instance Details

Dependencies Blocking Task From Getting Scheduled
Dependency Reason
Dagrun Running Task instance's dagrun was not in the 'running' state but in the state 'failed'.
Task Instance State Task is in the 'success' state which is not a valid state for execution. The task must be cleared in order to be run.
Attribute: python_callable
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def generar_cruce_flanders_opit(origin_flanders_container, origin_opit_container, origin_opit_blob, final_container, final_blob, rango_dias):
    """
    Función que permite generar un archivo final con los datos de Flanders y Opit
    
    Parámetros
    ----------
    origin_flanders_container: str
        Nombre del contenedor donde se encuentra el archivo Flanders.
    origin_opit_container: str
        Nombre del contenedor donde se encuentra el archivo Opit.
    origin_opit_blob: str
        Nombre del archivo Opit.
    final_container: str
        Nombre del contenedor donde se guardará el archivo final.
    final_blob: str
        Nombre del archivo final.
    rango_dias: int
        Número de días que se retrocederá para obtener los datos de Flanders.

    Returns
    -------
    None
    """

    """ Lectura de archivos """ 
    # Archivo Opit
    conn_origin_containerOpit = BlobClient.from_connection_string(conn_str=BLOB_CONNECT_STRING, container_name=origin_opit_container, blob_name=origin_opit_blob)
    download_streamOpit = conn_origin_containerOpit.download_blob()

    stream = BytesIO()
    download_streamOpit.readinto(stream)
    df_opit = pd.read_parquet(stream)

    # Lectura archivo Flanders
    df_flanders = pd.DataFrame(columns=COLUMNAS_FLANDERS)

    for i in range(0, rango_dias+1):
        try: 
            fecha_anterior = FECHA_ACTUAL_DATETIME - timedelta(days=i)
            fecha_anterior_formateada = fecha_anterior.strftime('%Y-%m-%d')

            """ Leyendo el archivo de flanders """
            conn_origin_containerhhd = BlobClient.from_connection_string(conn_str=BLOB_CONNECT_STRING, container_name=origin_flanders_container, blob_name=f'SierraGorda/BrightBoard/Flanders/{fecha_anterior_formateada}/flanders.json')
            download_streamhhd = conn_origin_containerhhd.download_blob()
            df_flanders_dia = pd.read_json(download_streamhhd, orient='table')  

            df_flanders = pd.concat([df_flanders_dia, df_flanders], ignore_index=True)
        except: 
            pass

    ## Procesar los datos
    df_opit['malla_id_str'] = df_opit['malla_id'].apply(str)
    df_opit['malla_name_str'] = df_opit['malla_name'].apply(str)
    df_opit['blast_date_str'] = df_opit['blast_date'].apply(str)

    df_opit['unique_malla'] = df_opit['malla_id_str'] + '|'+ df_opit['malla_name_str'] + '|' + df_opit['blast_date_str']
    df_opit['x'] = df_opit['holes_coordinates_x'].astype(float)
    df_opit['y'] = df_opit['holes_coordinates_y'].astype(float)

    ### Seteando coordenadas
    df_flanders['x'] = df_flanders['DesignEasting'].astype(float)
    df_flanders['y'] = df_flanders['DesignNorthing'].astype(float)

    df_Flanders_opit = pd.merge(df_flanders, df_opit, how='left', on=['x','y'], indicator=True)
    df_Flanders_opit['DateTime'] = df_Flanders_opit['DateTime'].astype('datetime64[ns]')
    df_Flanders_opit['mes'] = df_Flanders_opit['DateTime'].dt.month

    ## Generando nuevos archivos 
    df_Flanders_opit['DateTimeStr'] = df_Flanders_opit['DateTime'].astype(str).str[0:10]

    fechas = df_Flanders_opit['DateTimeStr'].unique()

    for fecha in fechas: 
        df_aux = df_Flanders_opit.loc[df_Flanders_opit['DateTimeStr']==fecha]

        df_aux = df_aux[['RecordID', 'shift_index', 'Mine_HoleNumber', 'BenchBelow', 'BitNumber',
            'BitUsage', 'AvgHoleEnergy', 'AvgPenetrationRate2', 'HoleDepth',
            'TargetDepth', 'PatternHoleNumber', 'BlastName', 'DrillPattern',
            'DateTime', 'Drill_Number', 'OperatorID', 'HoleNumber',
            'DesignNorthing', 'DesignEasting', 'ActualCollarNorthing',
            'ActualCollarEasting', 'designelevation', 'actualelevation',
            'actualgroundelevation', 'Bench Below', 'Hole Difference', 'Rango',
            'Categoria', 'Nombre Categoria', 'Desviacion', 'Extra Sobreperforación',
            'Extra Reperforación', 'Turno', 'DrillTime', 'x', 'y', 'malla_id',
            'malla_name', 'uniqid', 'owner_id', 'owner_name', 'owner_email',
            'shotfire', 'design_responsible', 'site_name', 'location_name',
            'country', 'coordinates_lat', 'coordinates_lng', 'blast_date', 'Mine',
            'Blast', 'Bank', 'Fase', 'truckName', 'holes_id', 'holes_number',
            'holes_label_blast_new', 'holes_label2', 'holes_length',
            'holes_diameter', 'holes_angle', 'holes_azimuth', 'holes_stemming',
            'holes_subdrilling', 'holes_water', 'holes_redrill', 'holes_deleted',
            'holes_verified', 'holes_problems', 'holes_coordinates_x',
            'holes_coordinates_y', 'holes_zones_final_length',
            'holes_zones_truck_number', 'holes_zones_number_detonators',
            'holes_zones_number_primes', 'holes_zones_temperature', 'holes_polygon',
            'holes_operator_email', 'holes_operator_id', 'holes_operator_name',
            'holes_tipo', 'holes_water_level', 'holes_zones_density',
            'holes_label_blast_new_charge', 'charge_name', 'charge_type',
            'charge_unit', 'charge_quantity', 'charge_rule_unit',
            'charge_rule_value', 'charge_tipo', 'malla_id_str', 'malla_name_str',
            'blast_date_str', 'unique_malla', '_merge', 'mes']]

        ## Configuracion para subir al blob
        blob = BlobClient.from_connection_string(conn_str=BLOB_CONNECT_STRING, container_name=final_container, blob_name=final_blob)

        ## Subir la data 
        json_data = df_aux.to_json(index=False, orient='table')
        blob.upload_blob(json_data, overwrite=True)

        """ Proceso aparte (Subir a otro blob) """
        ## Subir a otro blob 
        connection_string_rgr = 'DefaultEndpointsProtocol=https;AccountName=rgrprimerbf21;AccountKey=RCY0IhFKkBYe8xAp1k9ZfF8QK148d4vjf+Rlhf3yO4fUMNNM+SIMV4lCSG/j6e1CjVpRjhIY1oVR+AStkXbwSw==;EndpointSuffix=core.windows.net'
        blob_rgr = BlobClient.from_connection_string(conn_str=connection_string_rgr, container_name='data', blob_name=f"SierraGorda/FlandersOpitMalla/{fecha}/flanders_opit_malla_{fecha}.json")

        ## Subir la data 
        blob_rgr.upload_blob(json_data, overwrite=True)    
Task Instance Attributes
Attribute Value
dag_id SierraGorda_BrightBoard
duration 23.180685
end_date 2025-12-31 12:33:51.301607+00:00
execution_date 2025-12-31T00:30:00+00:00
executor_config {}
generate_command <function TaskInstance.generate_command at 0x7783d3ac3040>
hostname 447b87b210b3
is_premature False
job_id 13923
key ('SierraGorda_BrightBoard', 'BrighBoard_GenerarCrudeFlandersOpitReal', <Pendulum [2025-12-31T00:30:00+00:00]>, 2)
log <Logger airflow.task (INFO)>
log_filepath /usr/local/airflow/logs/SierraGorda_BrightBoard/BrighBoard_GenerarCrudeFlandersOpitReal/2025-12-31T00:30:00+00:00.log
log_url http://localhost:8080/admin/airflow/log?execution_date=2025-12-31T00%3A30%3A00%2B00%3A00&task_id=BrighBoard_GenerarCrudeFlandersOpitReal&dag_id=SierraGorda_BrightBoard
logger <Logger airflow.task (INFO)>
mark_success_url http://localhost:8080/success?task_id=BrighBoard_GenerarCrudeFlandersOpitReal&dag_id=SierraGorda_BrightBoard&execution_date=2025-12-31T00%3A30%3A00%2B00%3A00&upstream=false&downstream=false
max_tries 0
metadata MetaData(bind=None)
next_try_number 2
operator PythonOperator
pid 2965937
pool default_pool
prev_attempted_tries 1
previous_execution_date_success None
previous_start_date_success None
previous_ti <TaskInstance: SierraGorda_BrightBoard.BrighBoard_GenerarCrudeFlandersOpitReal 2025-12-30 12:30:00+00:00 [success]>
previous_ti_success None
priority_weight 1
queue default
queued_dttm 2025-12-31 12:33:23.420794+00:00
raw False
run_as_user None
start_date 2025-12-31 12:33:28.120922+00:00
state success
task <Task(PythonOperator): BrighBoard_GenerarCrudeFlandersOpitReal>
task_id BrighBoard_GenerarCrudeFlandersOpitReal
test_mode False
try_number 2
unixname airflow
Task Attributes
Attribute Value
dag <DAG: SierraGorda_BrightBoard>
dag_id SierraGorda_BrightBoard
depends_on_past False
deps {<TIDep(Not In Retry Period)>, <TIDep(Trigger Rule)>, <TIDep(Previous Dagrun State)>}
do_xcom_push True
downstream_list []
downstream_task_ids set()
email None
email_on_failure True
email_on_retry True
end_date None
execution_timeout None
executor_config {}
extra_links []
global_operator_extra_link_dict {}
inlets []
lineage_data None
log <Logger airflow.task.operators (INFO)>
logger <Logger airflow.task.operators (INFO)>
max_retry_delay None
on_failure_callback None
on_retry_callback None
on_success_callback None
op_args []
op_kwargs {'origin_flanders_container': 'processed', 'origin_opit_container': 'raw', 'origin_opit_blob': 'SierraGorda/Historico/opit.parquet', 'final_container': 'processed', 'final_blob': 'SierraGorda/BrightBoard/FlandersOpitMalla/2026-01-02/flanders_opit_malla_2026-01-02.json', 'rango_dias': 5}
operator_extra_link_dict {}
operator_extra_links ()
outlets []
owner pedro
params {}
pool default_pool
priority_weight 1
priority_weight_total 1
provide_context False
queue default
resources None
retries 0
retry_delay 0:05:00
retry_exponential_backoff False
run_as_user None
schedule_interval 30,30 12,0 * * *
shallow_copy_attrs ('python_callable', 'op_kwargs')
sla None
start_date 2023-04-22T00:00:00+00:00
subdag None
task_concurrency None
task_id BrighBoard_GenerarCrudeFlandersOpitReal
task_type PythonOperator
template_ext []
template_fields ('templates_dict', 'op_args', 'op_kwargs')
templates_dict None
trigger_rule all_success
ui_color #ffefeb
ui_fgcolor #000
upstream_list [<Task(PythonOperator): BrighBoard_GenerarArchivoFlanders>]
upstream_task_ids {'BrighBoard_GenerarArchivoFlanders'}
wait_for_downstream False
weight_rule downstream